Uniform test of algorithmic randomness over a general space
نویسندگان
چکیده
منابع مشابه
Uniform test of algorithmic randomness over a general space
The algorithmic theory of randomness is well developed when the underlying space is the set of finite or infinite sequences and the underlying probability distribution is the uniform distribution or a computable distribution. These restrictions seem artificial. Some progress has been made to extend the theory to arbitrary Bernoulli distributions (by Martin-Löf), and to arbitrary distributions (...
متن کاملRandomness Test , over a General Space
The algorithmic theory of randomness is well developed when the underlying space is the set of finite or infinite sequences and the underlying probability distribution is the uniform distribution or a computable distribution. These restrictions seem artificial. Some progress has been made to extend the theory to arbitrary Bernoulli distributions (by Martin-Löf), and to arbitrary distributions (...
متن کاملAlgorithmic randomness over general spaces
Algorithmic randomness over general spaces has been considered such as an effective topological space and a computable metric space. In this paper we generalize algorithmic randomness to a computable topological space. First we define computable measures on a computable topological space and study computability of the evaluation. Next we define randomnesses via three approaches. Measure randomn...
متن کاملUniform distribution and algorithmic randomness
Abstract. A seminal theorem due to Weyl [14] states that if (an) is any sequence of distinct integers, then, for almost every x ∈ R, the sequence (anx) is uniformly distributed modulo one. In particular, for almost every x in the unit interval, the sequence (anx) is uniformly distributed modulo one for every computable sequence (an) of distinct integers. Call such an x UD random. Here it is sho...
متن کاملA Randomness Test for Stable Data
In this paper, we propose a new method for checking randomness of non-Gaussian stable data based on a characterization result. This method is more sensitive with respect to non-random data compared to the well-known non-parametric randomness tests.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2005
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2005.03.054